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A general formalism for the analytic energy derivatives in the context of the recently devel-
oped state-selective version of the direct iterative approach to the generalized Bloch equa-
tion is presented. An explicit formalism is developed for both the gradients and the Hessian
by exploiting the so-called Z-vector method. A procedure for the development of the corre-
sponding algorithm for higher than the second-order properties is also briefly outlined.
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A detailed treatment of reaction dynamics – presently limited to small mo-
lecular species – generally requires a rather precise knowledge of the full po-
tential energy (hyper)surface (PES). However, the generation of such
surfaces for larger molecular systems, involving more than a few degrees of
freedom, is beyond the scope of the present-day computational capabilities.
Thus, in order to access the information about the various transition states
or intermediate transient species, as well as different paths or channels that
characterize reactive processes involving polyatomic molecules, or to exam-
ine various stereoisomers of a given molecule, most state-of-the-art ab initio
quantum chemistry codes rely on the evaluation of gradients and, when-
ever feasible, of the higher-order energy derivatives. The second derivatives
or Hessians are then employed to compute vibrational frequencies or, in
the case of imaginary frequencies, to assess the instability of the given in-
termediate species. Indeed, these facilities are presently available for almost
all methods that are commonly exploited to treat the electron correlation
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effects, notably the many-body perturbation theory (MBPT) up to and in-
cluding the fourth order1,2, the coupled cluster (CC) approaches, such as
the standard CCSD (refs3–8), CCSD(T) (ref.8), CCSDT-1 (ref.2), and even full
CCSDT (ref.1), as well as for the configuration interaction (CI) ap-
proaches9–11. Recently, the analytic derivatives technique was also devel-
oped for the equations-of-motion coupled cluster (EOM-CC)12–14 and simi-
larity transformed (ST) EOM-CC (ref.15) methods, as well as for
multireference (MR) CC approaches16.

The facility to compute analytical derivatives enables an efficient search
of complex multidimensional PESs, which in turn makes it possible to find
the location of various extrema, be they local maxima, minima, or saddle
points (gradient method17) on the potential energy (hyper)surface of a
given polyatomic. Essentially the same codes may then be employed to find
the energy derivatives with respect to perturbations due to various external
fields and thus be used to calculate various many-electron response proper-
ties.

Recently, we have developed a new method for the direct iterative solu-
tion of the generalized Bloch equation18–25, referred to as DGB for the sake
of brevity. The generalized Bloch equation lies at the heart of genuine
multireference (MR) approaches to the many-electron correlation problem.
MR approaches are indispensable for a proper handling of degenerate or
quasidegenerate systems. Needless to say that such situations almost always
arise when breaking genuine chemical bonds. The DGB method enables a
great flexibility in introducing various approximations when truncating the
full CI expansion at various levels of excitation, including the complete or
partial implementation of the coupled cluster Ansatz. The multitude of pos-
sible approximation schemes (cf. ref.18) was first tested on model systems22

involving four to sixteen hydrogen atoms (particularly the so-called H4
(ref.26) and H8 (ref.27) models) and, subsequently, on a number of small
molecular species23–25. Both ground and excited states of closed- and
open-shell type were examined. These preliminary applications yielded
very encouraging results.

In this paper we present the analytical energy derivatives for the DGB
method. The essence of the method is first briefly summarized in Section I,
where we also introduce the necessary nomenclature. Section II is then
devoted to the evaluation of the first and second derivatives, and presents
a general algorithm for this purpose. The results are summarized in
Section III.
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I. THE ENERGY

In this section we present a brief summary of the direct iterative approach
to the solution of the generalized Bloch equation18 (DGB approach, see Part
II (ref.18) for details), in order to introduce the necessary notation.

Reference Space

The general MR approaches employ the concept of the reference space M0,
representing a suitable, finite-dimensional subspace of the N-electron space
V which is spanned by all possible N-electron configuration states (or Slater
determinants) Φα. In all practical calculations, V is also finite dimensional
and is given by the choice of the atomic orbital (AO) basis set defining a
given ab initio model. An n-dimensional (complete or incomplete) reference
space M0 is defined as a linear span of n orthonormal configurations Φα, α ∈
Ip ≡ {1, ···, n}, the remaining configurations Φα, α ∈ Iq ≡ {n + 1, ···, n + m} de-
fining its orthogonal complement M 0

⊥ in V. The orthogonal projectors onto
M0 and M 0

⊥ are then designated by $P and $Q, respectively, so that $P + $Q = $1,
the identity operator on V = M0 ⊕ M 0

⊥ .
The basic assumption of any MR approach is that with a suitably chosen

set of n exact N-electron eigenstates Ψa (a ∈ Ip) of a given Hamiltonian $H,

$ , ,H E a Ia a a pΨ Ψ= ∈ (1)

referred to as the target states, we can associate an n-dimensional reference
space M0 providing a reasonable zero-order approximation for Ψa in a sense
that their projections onto M0, $ ( )P a aΨ Ψ= 0 , a ∈ Ip, span M0, so that

M0 = Span{Ψa
( )0 |a ∈ Ip} = Span{Φα |α ∈ Ip}. (2)

Here Ea (a ∈ Ip) designate the corresponding exact eigenvalues of $H, and the
n-dimensional space M = Span{Ψa |a ∈ Ip} is referred to as the target space. In
the intermediate normalization,

〈 Ψ Ψa a
( ) |0 〉 = 〈 Ψ Ψa a

( ) ( )|0 0 〉 = 1, a ∈ Ip , (3)

the target states Ψa (a ∈ Ip) may be represented as follows
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Ψ Ψ Ψ Φ Φa a a
a a

II

g c
qp

= + = +⊥

∈∈
∑∑( ) ( ) .0

α α λ λ
λα

(4)

With this formulation, the main task is to set up the equations of motion
that enable us to determine the energies Ea as well as the coefficients
g a

α = 〈Φ Ψα | a 〉 , ( , ),a I pα ∈ and the wave function expansion coefficients
(WECs) ca

λ = 〈Φ Ψλ | a 〉 , ( , )a I Ip q∈ ∈λ , defining the reference space compo-
nent Ψa

( )0 and the outer space component Ψa
( )⊥ of Ψa , respectively. This has

been done in our earlier work that is described in Part II (ref.18, cf. also
refs19–25).

We next recall the matrix notation used in Part II. Clearly, both {Φα|α ∈
Ip} and {Ψa

( )0 |a ∈ Ip} can serve as a basis for M0. However, since the latter ba-
sis is nonorthogonal, we also introduce the corresponding dual basis

~ ( )Ψa
0 ,

namely

〈 ~
|( ) ( )Ψ Ψa b

0 0 〉 = 〈 Ψ Ψa b
( ) ( )|

~0 0 〉 = δab . (5)

We then define row matrices

|�〉 = (|�p〉 ,|�q〉) , (6)

with

|�p〉 = (|Φ1〉 , |Φ2〉 , ..., |Φn〉) , |�q〉 = (|Φn+1〉 , |Φn+2〉 , ..., |Φn+m〉) (7)

and

|�(0)〉 = (|Ψ1
0( ) 〉 , ..., Ψn

( )0 〉) , |�〉 = (|Ψ1 〉 , ..., Ψn 〉) , (8)

so that

〈�|�〉 = 1M×M = 〈�p|�p〉 ⊕ 〈 �q|�q〉 = 1n×n ⊕ 1m×m ≡ 1p ⊕ 1q , (9)

and

〈�(0)|�〉 = 1n×n = 1p , 〈�(0)|�(0)〉 = S , (10)

where M = n + m is the dimension of the N-electron space considered, M =
dimV = dimM0 + dimM 0

⊥ , and S is the overlap matrix S = ||〈Ψa
( )0 |Ψb

( )0 〉||. Further
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〈�p|�(0)〉 = 〈�p|�〉 = G = || g a
α ||n×n , 〈�q|�〉 = C = ||ca

λ ||m×n , (11)

so that

|�〉 = |�(0)〉 + |�(⊥) 〉 , (12)

with

|�(0)〉 = |�p〉G and |�(⊥) 〉 = |�q〉C , (13)

the latter designating the external component of |�〉 .
The dual basis {

~ ( )Ψa
0 }, satisfying Eq. (5), is given by

|
~
� ( )0 〉 = |�(0)〉S–1 = |�p〉GS–1 , (14)

since 〈�(0)|�(0)〉 = G†G = S defines the metric for the basis {Ψa
( )0 }. The projec-

tion operator $P onto M0 can take any of the following forms

$P = |�p〉 〈�p| = |
~
� ( )0 〉 〈�(0)| = |�(0)〉 〈 ~

� ( )0 | , (15)

while

$ $ $Q P= − =1 |�q〉 〈�q| , (16)

so that

$P |�〉 = |�p〉G = |�(0)〉 and $Q |�〉 = |�q〉C = |�(⊥) 〉 . (17)

The first task in any MR procedure is thus the choice of a suitable refer-
ence space M0, which contains zero-order reference functions that represent
a dominant component of the relevant states and correctly describe the dis-
sociation channel(s) of interest.

Equations of Motion

The key role in the determination of the coefficients g a
α and ca

λ is played
by the projector $P, Eq. (15), and its wave-operator-type counterpart $U (for
precise formulation, see e.g. ref.28),
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|�〉 = $U |�(0)〉 = $ $UP |�〉 = $U |�〉 , $U = $ $UP , (18)

so that

$U |�q〉 = 0 . (19)

Using this operator, we define the effective Hamiltonian $H(eff), acting in M0,
whose eigenvalues Ea are identical with those of $H, Eq. (1). Clearly, this is
only possible for a finite set of states Ψa spanning the target space M. In-
deed, projecting the Schrödinger equation (1) onto M0 using the projector
$P, we obtain using Eq. (18) that

$ $ $ $ $ .( ) ( ) ( ) ( )PHUP H Ea a a aΨ Ψ Ψ0 0 0≡ =eff (20)

Thus, diagonalizing $H(eff), represented by an n × n matrix H(eff), we find
both the exact energies Ea and the inner space coefficients g a

α = 〈Φ Ψα | $ | ( )U a
0 〉 .

The M0 component Ψa
( )0 of Ψa clearly accounts for the static and non-

dynamic correlation effects.
In order to determine the outer part of Ψa that is responsible for the dy-

namic correlation, we rely on the generalized Bloch equation
$ $ $ $ $( ) ( )UHU HUa aΨ Ψ0 0= , which is obtained by acting with $U on the Schrödinger
equation (1) and using Eq. (18). This equation then determines the outer
space coefficients

ca
λ = 〈Φ Ψλ | $ |U a 〉 = 〈Φ Ψλ | $ | ( )U a

0 〉 , a I Ip q∈ ∈, ,λ (21)

as well as $H(eff). In matrix form, the Bloch equation can be represented as
follows

〈�q|(1 – $U) $ $HU |�(0)〉 = 0 , (22)

while the energies are given by

E = 〈 ~
� ( )0 | $ $HU |�(0)〉 = S–1G† 〈�p| $ $HU |�(0)〉 . (23)
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These two equations, Eqs (22) and (23), thus represent the basic formulas
for the derivation of the explicit representation for the derivatives of the
energy. In our derivations we shall also rely on the following useful expres-
sions

〈 ~
� ( )0 | $U |�(0)〉 = 1p , 〈�q| $U |�(0)〉 = C , 〈�q| $U |�q〉 = 0 . (24)

II. DERIVATIVES OF THE ENERGY

In general, the molecular electronic energy depends on parameters appear-
ing in the Hamiltonian. Such parameters represent either the nuclear coor-
dinates, when we are interested in molecular geometry, or characterize the
property operator $O that is added to the standard Hamiltonian $H 0 ,
$ ( ) $ $H H Oχ χ= +0 , when considering properties. The key principle that de-

scribes the energy dependence on the parameters characterizing the
Hamiltonian is the well-known Hellmann–Feynman theorem29

d
d
E( )χ
χ

= 〈 Ψ Η Ψ( )|
$ ( )

| ( )χ ∂ χ
∂χ

χ 〉 , (25)

where the exact eigenstate Ψ(χ) of $H(χ) is assumed to be normalized, i.e.
〈Ψ(χ)|Ψ(χ)〉 = 1. We note that Eq. (25) holds not only for the exact wave
function |Ψ〉, but also for certain classes of (variational) wave functions.

Since the approaches we are interested in are not necessarily variational
(e.g., the DGB and CC methods), the Hellmann–Feynman theorem does not
generally hold. Nonetheless, Eq. (25) represents a useful approximate for-
mula when estimating the derivative on the left-hand side (see also ref.30,
pp. 89–104, for an overview of approaches to properties, especially in con-
nection with CC methods).

First Derivatives

The starting point for our considerations is the energy representation,
Eq. (23), and the generalized Bloch equation, Eq. (22), i.e.,

E(χ) = 〈 ~
�(0)(χ)| $ ( ) $( )H Uχ χ |�(0)(χ)〉 , (26)
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〈�q|(1 – $( )U χ ) $ ( ) $( )H Uχ χ |�(0)(χ)〉 = 0 . (27)

Here we assume that the system depends on n parameters designated by χ =
{χ1, χ2, ..., χn} – be they nuclear displacements with respect to a given con-
figuration or the parameters defining the perturbed Hamiltonian,
$ ( ) $ $ .H H Oχ χ= +0

In addition, we represent the Hamiltonian in its normal product, second-
quantized form,

$ ( ) $ ( ) $( ) $( ) [ $ $ ]†

,

H H F V f a a vpq p q
p q

pqrsχ χ χ χ≡ = + = +∑N N
1
4

N[ $ $ $ $ ] ,† †

, , ,

a a a ap q s r
p q r s
∑ (28)

where fpq and vpqrs designate, respectively, the one-electron (Fock operator)
and two-electron integrals, $ ( $ )†a ap p is the creation (annihilation) operator as-
sociated with the spin orbital |p〉 , and N[···] designates the normal product
with respect to the Fermi vacuum (for more details, see e.g. refs1,28,30 and
references therein). Further, the symbol χ represents either a single parame-
ter (as in the case of single perturbing field $O) or a set of parameters
χ χ χ χ= { , , ... , }.1 2 n The dependence of the Hamiltonian on χ is either ex-
plicit through fpq and vpqrs due to the external fields or nuclear
displacements, or implicit through the orbital basis functions, since the lat-
ter vary with molecular displacements or external perturbations (e.g. the ex-
ternal field strength). The basis of Slater determinants, {|�p〉, |�q〉}, may then
be considered to be independent of the parameters χ.

For practical calculations of molecular gradients or one-electron proper-
ties, we have to evaluate the derivatives at χ = 0 and, in the former case, we
also have to add the analytic derivatives of the nuclear repulsion energy
and the derivatives of the energy of the reference determinat at χ = 0 in or-
der to obtain the derivatives of the total energy. Therefore, all the following
expressions for the derivatives are considered to be evaluated at χ = 0. For
the wave operator $U, the Hamiltonian $H, and the energy E, as well as for
their first derivatives, we thus write

$ $( )| , $ $( )| ,U U U Ui i= ∂ = ∂= =χ χχ χ0 0 (29)

( ) ( )$ $( ) $( ) | , $ $( ) $( ) | ,H F V H F Vi i i= + ∂ = ∂ + ∂= =χ χ χ χχ χ0 0 (30)
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E = E(χ)|χ=0 , ∂ ∂ =i iE = E( )| .χ χ 0 (31)

In Eqs (29)–(31) and in the following text, we use the ubiquitous shorthand
notation for partial differentiation, ∂/∂χi ≡ ∂i , ∂2/∂χi∂χj ≡ ∂ ij , etc.

In order to calculate the energy gradient, we have to differentiate Eq. (26)
with respect to the parameters χ. Applying the partial differentiation opera-
tor ∂i to Eq. (26) or Eq. (23), we obtain the components of the gradient of
the energy, namely

∂ ∂i iE = S G( )–1 † 〈 � �p HU| $ $ | ( )0 〉

+ 〈 ~
| $ $ |� �(0) HU p 〉 ∂ i ( )G

+ 〈 ~
|( $ ) $ $ ( $)| ( )� �(0) ∂ ∂i iH U H U+ 0 〉 .

(32)

On the right-hand side of Eq. (32), all the terms are known, in principle,
from the energy calculations, except ∂i(GS–1) or ∂i(G), and ∂i

$U. Thus, when
using the MR formalism, we must rely not only on the generalized Bloch
equation in order to determine ∂i

$U, but also on the effective Hamiltonian
in order to obtain equations for ∂i(G). To avoid this procedure, which leads
to coupled algebraic equations as in the case of the energy calculation, we
consider a simpler case, assuming that the coefficients of the reference
functions G are fixed, i.e. G(χ) = G(0), so that ∂i(G) = 0. This requirement is
realized in the so-called state-selective (SS) version of the DGB method, in
which case the Hamiltonian is first diagonalized within the model space M0
and the resulting eigenstates are then handled one at a time. Clearly, the
biorthogonal basis then simply becomes 〈�(0)| by construction (so that S =
1p). We can thus drop the first two terms on the right-hand side of Eq. (32)
and set 〈 ~

�(0)| = 〈�(0)|.
In the spirit of the SS approach, we thus consider a single reference state,

e.g. |Ψa
( )0 〉 . This implies that the basis set {|�q〉}, q ∈ ′I q = Iq U (Ip\{a}), now

contains |Φq〉 ∈ M 0
⊥ when q ∈ Iq as well as |Φq〉 ≡ | ( )Ψb

0 〉 ∈ M0 when q = b ∈
Ip\{a}. With this new notation, the energy derivative becomes

∂ =i aE 〈 Ψ Ψa i i aH P Q U H P Q U( ) ( )|( $ )( $ $) $ $ ( $ $)( $)|0 0∂ + + + ∂ 〉
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= 〈Ψa i H
( ) |( $ )0 ∂ |Ψa〉 + 〈 Ψa H( ) | $0 |�q〉 〈�q|∂ iU

$ |Ψa
( )0 〉

= 〈 Ψa i H
( ) | $0 ∂ |Ψa

( )0 〉 + 〈 Ψa i H
( ) | $0 ∂ |�q〉 〈�q| $U |Ψa

( )0 〉

+ 〈 Ψa H( ) | $0 |�q〉 〈�q|∂ iU
$ |Ψa

( )0 〉 .

(33)

Here, we used the fact that 〈 Ψ Ψa i aU( ) ( )| $ |0 0∂ 〉 = ∂ i 〈 Ψ Ψa aU( ) ( )| $ |0 0 〉 = 0 (cf. the first
Eq. (24)). Since $H(χ), $U(χ), and therefore ∂ i H

$ ( )χ , are known at χ = 0, only
∂ iU

$ must be found. Specifically, we have to determine 〈�q|∂ iU
$ |Ψa

( )0 〉 . Note
that the first term on the right-hand side of the last Eq. (33) restates the
Hellmann–Feynman theorem, Eq. (25), for the case of the “unperturbed”
reference state |Ψa

( )0 〉 .
In the subsequent development, leading to the determination of the first

derivatives of the WECs, we follow a more or less standard strategy (cf.
refs8,30, and references therein), except that we rely on the generalized
Bloch equation rather than, e.g., the standard SR CC equations. Thus, dif-
ferentiating Eq. (27), we find

∂i〈�q|(1 – $) $ $ | ( )U HU aΨ 0 〉 =

〈�q|(–(∂ ∂ ∂i i i aU HU U H U U H U$) $ $ ( $)( $ ) $ ( $) $ ( $))| ( )+ − + −1 1 0Ψ 〉 = 0 ,

(34)

and inserting the identity 1 = $P + $Q between ∂ iU
$ and $H in the first term,

and between $H and ∂ iU
$ in the last term, we obtain after some manipula-

tions (recall that $U = $U $P) the following matrix representation for the deriva-
tives of the wave operator,

〈�q| ∂ iU
$ | ( )Ψa

0 〉〈Ψa
( )0 | $ $HU | ( )Ψa

0 〉 – 〈�q|(1– $) $ |U H q� 〉〈�q| ∂ iU
$ | ( )Ψa

0 〉 =

〈�q| $ |( ) ( )Π Ψi
a

0 〉 ,

(35)

where $ ( )Π i is the Bloch-transformed derivative of the Hamiltonian:

$ ( $)( $ ) $ .( )Π i
iU H U≡ − ∂1 (36)

Since 〈 Ψ Ψa aHU( ) ( )| $ $ |0 0 〉 represents the energy Ea (cf. Eq. (26)), we can simplify
Eq. (35) as follows
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〈�q|∂ iU
$ | ( )Ψa

0 〉Ea – 〈�q |(1 – $) $ |U H q� 〉 〈�q |∂ i aU$ | ( )Ψ 0 〉 = 〈�q | $ |( ) ( )Π Ψi
a

0 〉 , (37)

yielding an ordinary linear algebraic system of equations for the derivatives
〈�q |∂ i aU$ | ( )Ψ 0 〉 , namely

{〈�q |Ea1q – (1 – $) $ |U H q� 〉} 〈 �q|∂ i aU$ | ( )Ψ 0 〉 = 〈�q | $ |( ) ( )Π Ψi
a

0 〉 . (38)

Solving formally Eq. (38) for 〈�q|∂ i aU$ | ( )Ψ 0 〉 and inserting into the gradient
component of the energy, Eq. (33), we obtain

∂iEa = 〈Ψ Ψa i aH( ) | $ |0 ∂ 〉 + 〈Ψa qH( ) | $ |0 � 〉 [〈 �q |Ea1q – $ |H �q 〉]–1〈�q | $ |( ) ( )Π Ψi
a

0 〉

= 〈 Ψ Ψa i aH( ) | $ |0 ∂ 〉 + 〈 Ψ Λa q
( ) | $ |0 � 〉 〈�q | $ |( ) ( )Π Ψi

a
0 〉 ,

(39)

where $ ( $) $H ≡ −1 U H. Following the so-called “Z-vector” or “interchange”
method9,31,32 (see also refs8,30), we introduced in the last step the operator
$Λ, which is independent of χ, and whose vector components in {|�q〉} are
given by the solution of the system of linear equations

〈 Ψa q
( ) | $ |0 Λ � 〉〈�q|(Ea1q – $ |H ) �q 〉 = 〈 Ψa qH( ) | $ |0 � 〉 . (40)

Defining the elements of column matrices �a and ha as follows

λ µ
a = 〈 Ψ Λ Φa

( ) | $ |0
µ 〉 , ha

µ = 〈 Ψ Φa H( ) | $ |0
µ 〉 , (41)

as well as the matrix elements

Aµν = Eaδµν – Hµν ,

Hµν = 〈Φ Φµ ν|( – $) $ |1 U H 〉 = 〈Φ Φµ ν| $ |H 〉 – ca
µ 〈 Ψ Φa H( ) | $ |0

ν 〉 ,

(42)
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we can rewrite Eq. (40) in the following standard matrix form

$ .A hT a a� = (43)

At this point we should recall the fact that in the case that µ and/or ν ∈ Ip\{a},
we have that 〈Ψ Ψb cH( ) ( )| $ |0 0 〉 = Eb bc

( )0 δ , where Eb
( )0 is the energy expectation

value of |Ψb
( )0 〉 . We must also stress that this “interchange” method com-

pletely eliminates the dependence on the first derivatives of WECs.
Solving now Eq. (43) for �a, and substituting into Eq. (39), we can write

for the components of the energy gradient

∂iEa = 〈g H ga
p
i a| $ ( ) 〉 + 〈g H ca

q
i a| $ ( ) 〉 + 〈�a|b(i,a)〉 , (44)

where the components of b(i,a) are given by

b i a
µ
( , ) = Π µa

i( ) = 〈Φ Ψµ |( – $)( $ ) $ | ( )1 0U H Ui a∂ 〉

= 〈Φ Ψµ | $ | ( )∂ i aH 0 〉 +
ν
∑〈Φ Φµ ν| $ |∂ i H 〉 ca

ν

− ca
µ {〈Ψ Ψa i aH( ) ( )| $ |0 0∂ 〉 +

ν
∑〈 Ψ Φa i H

( ) | $ |0 ∂ ν 〉 ca
ν } ,

(45)

while ga = || g a
α || are the coefficients of the reference function (cf. Eq. (4)),

and ca = ||ca
µ || = ||〈Φ Ψµ | $ | ( )U a

0 〉 || are WECs associated either with outer space
basis states |Φµ〉 ∈ M 0

⊥ when µ = q ∈ Iq or with the remainder of M0 relative
to |Ψa

( )0 〉 when µ = b ∈ Ip\{a} and |Φb〉 ≡ |Ψb
( )0 〉 . Further, we define

( $ )H( )
p
i

αβ = (〈Φ Φα β∂| $ |i H 〉) = G αβ α βi
pI, , ,∈ (46)

( $ )H( )
q

i
αµ = (〈Φ Φα µ∂| $ |i H 〉) = ∈ ∈ ′G αµ α µi

p qI I, , , (47)

where in the case that µ ∈ Ip\{a} we have that

G Gα αβ β
β

b
i bg=

∈
∑ i

I p

. (48)

Explicitly, Eq. (45) takes the form
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∂ = + +
∈
∈ ′

∈
∑∑i a

a i a a i a

I
I

aE g g g c

q

p

α αβ β α αµ µ
α
µ

α β
µ µλ γG G

I p,

{ a
i a a

a
i

II

c g
pq

−
∈∈ ′
∑∑ µ β β
βµ

γ } , (49)

where

γζ ζα α
α

ζγ γ
γ

a
i i a

I

i a

I

g c
p q

= +
∈ ∈ ′
∑ ∑G G . (50)

An important feature of this result is the fact that Eq. (49) is completely in-
dependent of the derivatives of the WECs ca

µ . This will no longer be the case
when we consider higher derivatives of the energy.

Since the g a
α , ca

µ , and λ µ
a are either available or easily generated once the

DGB calculation is carried out, the only quantities that remain to be evalu-
ated are the matrix elements G µν

i of the derivatives of the Hamiltonian (cf.
also Eq. (30)), which depend both on the basis functions and the MO coef-
ficients (and, eventually, on the external field, as already mentioned), and
thus on the parameters χ. The explicit expressions for the derivatives of the
Hamiltonian, ∂ i F

$( )χ and ∂ iV
$( )χ at χ = 0 can be found, for example, in Sec-

tion III.B of ref.1 (cf. also the Appendix).

Second Derivatives

Besides the first derivatives, the second derivatives are essential when evalu-
ating higher-order properties, e.g., polarizabilities and susceptibilities, and
in the case of nuclear displacements, when determining the force constants
and vibrational frequencies. Following the same procedure as for the first
derivative, we thus next present the required formalism enabling the com-
putation of the second derivatives.

Formally, we first apply the partial derivative ∂ j to Eq. (33), yielding the
second derivatives of the energy

∂ =
=ij a jE ( )χ ∂

χ 0
{〈Ψ Ψa i aH( ) ( )| $ |0 0∂ 〉 + 〈Ψa i qH( ) | $ |0 ∂ � 〉 〈�q | $U |Ψa

( )0 〉

+ 〈Ψa qH( ) | $ |0 � 〉 〈�q |∂ iU
$ |Ψa

( )0 〉}

= 〈 Ψ Ψa ij aH( ) ( )| $ |0 0∂ 〉 + 〈Ψa ij qH( ) | $ |0 ∂ � 〉 〈�q | $U |Ψa
( )0 〉

+ 〈Ψa i qH( ) | $ |0 ∂ � 〉 〈�q |∂ jU
$ |Ψa

( )0 〉 + 〈Ψa j qH( ) | $ |0 ∂ � 〉 〈�q |∂ iU
$ |Ψa

( )0 〉

+ 〈Ψa qH( ) | $ |0 � 〉 〈�q |∂ ijU
$ |Ψa

( )0 〉 .

(51)
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The only new quantities that have to be determined are the second partial
derivatives of the wave operator and of the Hamiltonian. Again, the latter
derivatives can be calculated directly (for the pertinent explicit expressions,
we refer the reader to Section II.B of ref.2). Further, we use analogous
notation to that of Eqs (29)–(31), implying that all quantities are evalu-
ated at χ = 0.

We can thus proceed in the same way as in the case of the first deriva-
tives, namely, we determine the second derivatives of the wave operator $U
by relying on the generalized Bloch equation, or its first derivative, Eq. (34),
yielding

∂j{〈�q| − + − + −( $) $ $ ( $)( $ ) $ ( $) $ ( $)∂ ∂ ∂i i iU HU U H U U H U1 1 |Ψa
( )0 〉} = 0 . (52)

To find the matrix elements for 〈�q|∂ ijU
$ |Ψa

( )0 〉 , we follow the above outlined
procedure for 〈�q |∂ iU

$ |Ψa
( )0 〉 . Thus, in complete analogy to Eq. (35), we find

〈�q |∂ ijU
$ |Ψa

( )0 〉 〈 Ψa
( )0 | $ $HU| ( )Ψa

0 〉 – 〈�q| $H | �q〉 〈�q |∂ ijU
$ |Ψa

( )0 〉 = 〈�q | $ |( ) ( )Π Ψij
a

0 〉, (53)

where we defined

$ ( )Π ij ≡ –(∂ iU
$)∂j( $ $HU) + ∂j[(1 − $U) (∂ i H

$ ) $U ] + ∂j[(1 − $U) $H ](∂ iU
$)

= –{(∂ iU
$)(∂ j H

$ ) + (∂ jU
$)(∂ i H

$ ) – (1 − $U)(∂ ij H
$ )} $U

–{(∂ iU
$) $H – (1 − $U) (∂ i H

$ )} (∂ jU
$)

–{(∂ jU
$) $H – (1 − $U) (∂ j H

$ )} (∂ iU
$) .

(54)

Replacing 〈 Ψ Ψa aHU( ) ( )| $ $ |0 0 〉 by the energy Ea, we can write Eq. (53) as follows

〈�q |∂ ijU
$ |Ψa

( )0 〉Ea – 〈�q | $H | �q〉 〈�q |∂ ijU
$ |Ψa

( )0 〉 = 〈�q | $ |( ) ( )Π Ψi
a

0 〉 , (55)

yielding again a linear system

{〈�q |Ea1q – $H |�q〉} 〈�q |∂ ijU
$ |Ψa

( )0 〉 = 〈�q | $ |( ) ( )Π Ψij
a

0 〉 . (56)
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The vector components of 〈�q| $ |( ) ( )Π Ψij
a

0 〉 may be transformed as follows

Finally, the second energy derivatives are given by the expression

∂ijE = 〈 Ψ Ψa ij aH( ) | $ |0 ∂ 〉

+ 〈 Ψ Λa
i

q
( ) ( )| $ |0 � 〉 〈 �q

j
a| $ |( ) ( )Π Ψ 0 〉
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〈 Φ Π Ψµ | |( ) ( )ij
a

0 〉 = – 〈 Φ Ψµ ∂| $ | ( )
i aU 0 〉 { 〈 Ψ Ψa j aH( ) ( )| $ |0 0∂ 〉

+
ν
∑〈Ψ Φa j H

( ) | $ |0 ∂ ν 〉 〈 Φ Ψν | $ | ( )U a
0 〉

+
ν
∑〈Ψ Φa H( ) | $ |0

ν 〉 〈 Φ Ψν ∂| $ | ( )
j aU 0 〉}

– 〈 Φ Ψµ ∂| $ | ( )
j aU 0 〉 { 〈 Ψ Ψa i aH( ) ( )| $ |0 0∂ 〉

+
ν
∑〈Ψ Φa i H

( ) | $ |0 ∂ ν 〉 〈 Φ Ψν | $ | ( )U a
0 〉

+
ν
∑〈Ψ Φa H( ) | $ |0

ν 〉 〈 Φ Ψν ∂| $ | ( )
i aU 0 〉}

+ 〈 Φ Ψµ ∂|( $) $ | ( )1 0−U Hij a 〉

+ {
ν
∑ 〈 Φ Φµ ν∂|( $) $ |1 −U Hi 〉 〈 Φ Ψν ∂| $ | ( )

j aU 0 〉

+ 〈 Φ Φµ ν∂|( $) $ |1 −U Hj 〉 〈 Φ Ψν ∂| $ | ( )
i aU 0 〉

+ 〈 Φ Φµ ν∂|( $) $ |1 −U Hij 〉 〈 Φ Ψν | $ | ( )U a
0 〉}

= – 〈 Φ Ψµ ∂| $ | ( )
i aU 0 〉 · ∂jEa – 〈 Φ Ψµ ∂| $ | ( )

j aU 0 〉 · ∂iEa

+ 〈 Φ Ψµ ∂|( $) $ | ( )1 0−U Hij a 〉

+ {
ν
∑ 〈 Φ Φµ ν∂|( $) $ |1 −U Hi 〉 〈 Φ Ψν ∂| $ | ( )

j aU 0 〉

+ 〈 Φ Φµ ν∂|( $) $ |1 −U Hj 〉 〈 Φ Ψν ∂| $ | ( )
i aU 0 〉

+ 〈 Φ Φµ ν∂|( $) $ |1 −U Hij 〉 〈 Φ Ψν | $ | ( )U a
0 〉} .

(57)



+ 〈Ψ Λa
j

q
( ) ( )| $ |0 � 〉 〈�q

i
a| $ |( ) ( )Π Ψ 0 〉

+ 〈 Ψ Λa q
( ) | $ |0 � 〉 〈 �q

ij
a| $ |( ) ( )Π Ψ 0 〉 ,

(58)

where 〈�q
i

a| $ |( ) ( )Π Ψ 0 〉 or 〈�q
j

a| $ |( ) ( )Π Ψ 0 〉 are defined by Eqs (36) and (45),
〈�q

ij
a| $ |( ) ( )Π Ψ 0 〉 are given by Eq. (57), 〈 Ψ Λa q

( ) | $ |0 � 〉 are obtained by solving
Eq. (40) or (43), and, similarly, 〈 Ψ Λa

i
q

( ) ( )| $ |0 � 〉 are obtained from

〈 Ψ Λa
i

q
( ) ( )| $ |0 � 〉 〈 � �q a qE|( $ )|1q −H 〉 = 〈 Ψa i qH( ) | $ |0 ∂ � 〉 , (59)

or, respectively,

$ ,( , ) ( , )A hT i a i a� = (60)

where

λ µ
( , )i a = 〈 Ψ Λ Φa

i( ) ( )| $ |0
µ 〉 ,

( , )h i a
µ = 〈 Ψ Φa i H

( ) | $ |0 ∂ µ 〉 =
∈
∑ g a i

I p

α αµ
α

G . (61)

Here, we also use the definition of $A from Eq. (42). With regard to
Eq. (41), �(i,a) can be interpreted as the first derivative of $Λ and h(i,a) as the
first derivative of a “dressed” Hamiltonian, so that � �a a≡ ( , )0 as well as ha ≡
h(0,a). Then, Eq. (57) is explicitly given by the following representation:

〈Φ Π Ψµ | $ |( ) ( )ij
a

0 〉 = − ⋅ ∂ − ⋅ ∂c E c Ei a
j a

j a
i aµ µ

( , ) ( , )

+ −
∈∈
∑∑ { }G Gµα µ β βα α
βα

ij a a ij a

II

c g g
pp

+ −
∈ ′
∑ {( )( , ) ( , )G µν µ
ν

ν ν
i a

I

i a j ac h c
q

+ −( )( , ) ( , )G µν µ ν ν
j a j a i ac h c

+ −( ) } ,( , ) ( )G µν µ ν ν
ij a ij a ac h c

(62)

where c ca a
µ µ( )( , )≡ 0 are the WECs, and further

c j a
ν
( , ) ≡ 〈Φ Ψν | $ | ( )∂ j aU 0 〉 , G µν

ij ≡ 〈Φ Φµ ν| $ |∂ ij H 〉 (63)

Collect. Czech. Chem. Commun. (Vol. 66) (2001)

Generalized Bloch Equation 1179



h ij a
ν
( , ) ≡ 〈 Ψ Φa ij H

( ) | $ |0 ∂ ν 〉 =
∈
∑ g a ij

I p

α αν
α

G . (64)

The matrix elements G µν
j are defined by Eqs (46) and (47), and analogous

formulas hold for G µν
ij with respect to the indices µ and ν.

In contrast to the first energy derivatives, Eq. (49), where no first deriva-
tives of the WECs (c j a

ν
( , ) ) are needed, in the case of the second derivatives of

the energy, the c j a
ν
( , ) quantities are required. Therefore, besides determining

�(i,a) (cf. Eq. (59) or (60)), we have to solve the linear algebraic equations for
c j a
ν
( , ) (cf. Eq. (38)), in which case the matrix $A is also required. Obviously, by

applying the interchange method, we can formulate the second derivatives
without requiring the second derivatives of WECs. Yet, we have to calculate
and/or store the first derivatives of WECs and the energy in order to obtain
the second derivatives of the energy.

Instead of using Eq. (51) to define the second derivatives of the energy,
we can exploit the first derivatives given by Eq. (49). As expected, Eq. (58)
shows an explicit symmetric structure of the second derivatives, i.e., the
symmetry with respect to the transposition of the parameters or indices, re-
spectively. On the other hand, the direct differentiation of the expression
for the first derivatives, Eq. (49), with respect to parameters, e.g. χj, leads to
an asymmetric representation of the second derivatives, namely

∂ = + +
∈ ∈

∈ ′

∑ ∑ij a
a ij a

I

a ij a

I
I

aE g g g c g
p p

q

α αβ β
α β

α αµ µ
α
µ

αG G
,

G αµ µ
α
µ

µ
µ

µ µ β
β

λ γ

i j a

I
I

j
a

I
a

i a a

I

c

c g

p

q

q

( , )

( ){

∈
∈ ′

∈ ′ ∈

∑

∑+ ∂ −
p

q p

a
i

a
j a

i

I

j a a
a

i

I

ac g c

∑

∑ ∑+ ∂ − −
∈ ′ ∈

γ

λ γ γ

β

µ µ
µ

µ β β
β

µ

}

{( ) ( , ) g a
j a

i

I p

β β
β

γ( )} ,∂
∈
∑

(65)

where

∂ = + +
∈ ∈ ′
∑ ∑j a

i ij a

I

ij a i j ag c c
p

γζ ζα α
α

ζγ γ ζγ γ
γ

G G G
I q

{ }.( , ) (66)

As already mentioned, this representation is not only asymmetric with re-
spect to the interchange of the indices, but it also depends on the first de-
rivatives of Λ. Therefore, this formulation requires an additional system of
equations for the Λ derivatives. To generate this system of equations, we
simply differentiate Eq. (43), obtaining
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$AT (∂j �
a ) = ∂j ha – (∂j

$AT )�a . (67)

The asymmetric form is more advantageous than the symmetric one when,
for instance, two different kinds of physical parameters are at play. If n1
components are related to one parameter set and n2 components to the pa-
rameters of the second kind and, e.g. n1 > n2, we have to determine n1 + n2 =
n perturbed WECs in the symmetric variant, while in the asymmetric case
we first exploit a smaller set of n2 χj components, so that this formulation
requires only n2 components for both the perturbed WECs and perturbed Λ
amplitudes. For more details, especially those pertaining to the energy de-
rivatives for various coupled cluster approximations, we refer the reader to
ref.8 and references therein.

Higher Derivatives

When we are interested in hyperpolarizabilities or, generally, in higher-
order properties, we must evaluate higher derivatives of the energy. Guided
by the above given examples, we can write the general expression for the

( )n r

r

+ −1 derivatives of the r-th order of the energy as a function of n parame-
ters χ = (χ1, χ2, ..., χn) as follows

∂ χ ∂χi i i a r ar
E E

1 2 0... [ ]( )| = = = 〈 Ψ Ψa r aH( )
[ ]| $ |0 ∂ 〉

+
∈=

−

∑∑
m P kk

r

r ( )1

1

〈Ψ Λa
m

q
( ) [ ]| $ |0 � 〉 〈 �q

m
a| $ |[{ }] ( )Π Ψ 0 〉

+ 〈Ψ Λa q
( ) | $ |0 � 〉 〈 �q

r
a| $ |[ ] ( )Π Ψ 0 〉 .

(68)

Without restricting the generality, we assume that a multi-index [r] ≡ (i1, i2,
..., ir) with i1 ≤ i2 ≤ ... ≤ ir defines a selection of r, not necessarily distinct, pa-
rameters from the parameter set χ. Then m P kr∈ ( ) runs over the set Pr(k) of
k-th order multi-indices [m] ≡ (j1, ..., jk), characterizing k-th order partial de-
rivatives ∂ ≡[ ] /m

k
j jk∂ ∂ ∂χ χ1 K , while [{m}] ∈ {Pr(k)} designates the comple-

mentary set of multi-indices with respect to [r]. Note that for r = 1 (the
gradient case), when [r] = (i), the second term on the right-hand side of
Eq. (68) is absent (the upper limit k = r – 1 is smaller than the lower limit k =
1) and we recover Eq. (39). For the second derivative case, when r = 2 and
[r] = (i, j), we have that P2(1) = (i, j) and {P2(1)} = (j, i), recovering Eq. (58).
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For the derivatives of higher order than 2 we proceed in a similar way.
Thus, for example, with n = r = 3 and [3] = (1, 2, 3), we have that P3(1) = (1,
2, 3), {P3(1)} = (23, 13, 12) and P3(2) = {P3(1)}, {P3(2)} = P3(1), while for [3] = (1,
1, 2), P3(1) = (1, 1, 2), {P3(1)} = (12, 12, 11), and again P3(2) = {P3(1)}, {P3(2)} =
P3(1). Note that when some of the indices in [r] are identical, we get corre-
spondingly identical terms on the right-hand side of Eq. (68).

As in the preceding cases, 〈Ψ Λa q
( ) | $ |0 � 〉 is given by Eq. (40) or (43) and

〈 �q
m

a| $ |[ ] ( )Π Ψ 0 〉 is defined as follows

$ {( $) $ $ } { $ } $ $ ( $) $ { $[ ]
[ ] [ ] [ ]Π m
m m mU HU U HU U H≡ − + − −∂ ∂ ∂1 1 U }. (69)

Since $ [ ]Π m contains k-th order derivatives of WECs c k a
µ
( , ) , (0 ≤ k ≤ #m – 1,

where #m designated the number of indices in [m]), (cf. Eq. (62)), we must
store these derivatives from the preceding calculations of the lower-order
derivatives. Otherwise we have to calculate them by solving an analogous
system of equations to that of Eq. (56), namely

{〈 � �q a qE| $ |1q −H 〉}〈 �q l aU| $ |[ ]
( )∂ Ψ 0 〉 = 〈 �q

l
a| $ |[ ] ( )Π Ψ 0 〉 , (70)

or, respectively,

$ ( , ) ( , )
,

( , )Ac l a l a l a= � � ≡ 〈�q
l

a| $ |[ ] ( )Π Ψ 0 〉 (71)

Finally, 〈Ψ Λa
m

q
( ) [ ]| $ |0 � 〉 are obtained by solving the linear equations (cf.

Eqs (40) and (59))

〈 Ψ Λa
m

q
( ) [ ]| $ |0 � 〉 〈� �q a qE|( $ |1q −H ) 〉 = 〈 Ψa m qH( )

[ ]| $ |0 ∂ � 〉 . (72)

Needless to say that the first term on the right-hand side of Eq. (68), involv-
ing Ψa, is approximated according to the DGB scheme employed, so that
the projector |�q〉 〈�q| involves the singly, doubly, triply, and/or up to
quadruply excited determinants or configurations, depending on the
scheme employed. (The same holds for the representations of the first and
second derivatives.) We also note that the derivatives of the Hamiltonian,
as given in refs1,2 for the first and second derivatives, are (unfortunately)
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not available in standard packages for higher derivatives. Finally, although
Eq. (68) can be exploited to calculate required higher-order derivatives, the
most efficient way to generate the derivatives or properties of very high
orders seems to be that based on the linear response approaches, as first
suggested by Monkhorst33 for the standard CC methods, and as first imple-
mented by Kondo, Piecuch and Paldus34 (for applications, see refs35–37).

III. SUMMARY

In this paper we describe a general procedure for the calculation of the en-
ergy derivatives with respect to a set of parameters χ in the framework of
the recently introduced DGB method. To determine the required expres-
sions, we have exploited the generalized Bloch equation in the context of
the direct iterative approach that constitutes the basis of the DGB method.
Our considerations were restricted to the so-called state-selective approach
(SS-DGB).

For the most important first and second derivatives of the energy, we give
explicit expressions in Section II. We also briefly outline an extension of
this formalism to the derivatives of higher than the second order (last part
of Section II).

APPENDIX: EXPLICIT GRADIENT FORMULAS

In this appendix we address the derivation of explicit formulas that are re-
quired for the actual implementation of the analytic energy derivatives
within the DGB formalism. For simplicity′s sake, we shall focus on gradi-
ents, Eq. (49). Since we shall employ Hartree–Fock (HF) orbitals, we can ex-
ploit many of the details of both the variational and perturbative
(including coupled cluster) approaches to the evaluation of the energy de-
rivatives that have been developed in the past, starting with the pioneering
work by Gerratt and Mills38 and coupled perturbed HF (CPHF) theory by
Caves and Karplus39 (going back to Dalgarno40 and Stevens et al.41). We
thus concentrate on the distinctions brought about by the DGB formalism,
while relying on the perturbation theory approach of Handy et al.42 and the
coupled cluster formalism for gradients of Salter et al.1, wherever appropri-
ate.

To simplify our notation, we drop the state labels and write Ea ≡ E,
g ga

α α≡ , etc., and set χi ≡ χ. We also introduce the replacement operator no-
tation (cf., e.g. refs28,30,43) and use the letters from the middle of the Latin
alphabet (i, j, k, l, ...) as generic labels for the HF molecular orbitals (MOs),
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while those from the beginning (a, b, c, d, ...) and the end (r, s, t, u, ...) of
this alphabet we reserve to designate, respectively, the occupied and the
unoccupied MOs in the HF reference |Φ0〉 . Consequently, we have that the
matrix elements of the Fock operator in the HF MO basis between the occu-
pied and virtual orbitals vanish, i.e., far = 0 for any a and r, so that our nor-
mal product Hamiltonian $ $ $ ( )H H HN ≡ ≡ λ , Eq. (28), takes the form

$ ~ ~ ~ ,
, , , , ,

H f e f e v eab b
a

a b
rs s

r

r s
ijkl kl

ij

i j k l

= + +∑ ∑ ∑1
4 (73)

where ~ [ ]†e a aj
i

i j≡ N , ~ [ ]† †e a a a akl
ij

i j l k≡ N , etc.
With this notation, the matrix elements G µν

χ , Eqs (46) and (47), become

G µν
χ ≡ 〈Φ Φµ χ ν| $ |∂ H 〉 ≡ 〈Φ Φµ

χ
ν| $ |H 〉

= + +∑ ∑f M f M v Mab a b
a b

rs r s
r s

ijkl ij kl
i j

χ µν χ µν χ µν
,

,
,

,
,

, ,

~
k l,
∑ ,

(74)

where

f fij ij
χ

χ χ≡ ∂ ==| 0 〈 i h j| $ | 〉χ +∑
a

〈 ia ja|| 〉χ, ~vijkl
χ = 1

4 〈 ij kl|| 〉χ , (75)

with 〈 ···〉χ = ∂χ〈 ···〉|χ=0 and 〈 i h j| $ | 〉 designating the one-electron component of
the Hamiltonian. Further,

M i j,
µν = 〈Φ Φµ ν|~ |e j

i 〉 , ,M ij kl
µν = 〈Φ Φµ ν|~ |e kl

ij 〉 , (76)

with µν designating αβ, αb or αµ. Using now Eq. (74) in Eq. (49), and sort-
ing the terms with respect to one- and two-electron derivative terms f ij

χ and
~vijkl

χ , we get

E D f D f D va b ab
a b

r s rs
r s

ij kl ijkl
i j k l

χ χ χ χ= + +∑ ∑ ∑,
,

,
,

,
, , ,

~ , (77)

where

D g c gx y x y
I

x y
I

x y
Ip q p

, , , ,{ } ,= + −
∈ ∈ ′ ∈
∑ ∑ ∑α

α

α
µ

µ
µ

µ
β

β

β

λΓ Γ Γ (78)

with x,y = a,b; r,s or ij,kl, and
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Γx y x y
I

x y
I

g M c M
p q

, , , .ζ
α

ζα

α
γ

ζγ

γ

= +
∈ ∈ ′
∑ ∑ (79)

In order to evaluate the derivative terms f ij
χ and ~vijkl

χ , we rely on the CPHF
formalism1,42, as well as on the procedure eliminating the singularities due
to the vanishing denominators when solving for the CPHF coefficients U ab

χ

and U rs
χ (cf. ref.1). This is done by setting U Sij ij

χ χ= − 1
2 (i,j = a,b or r,s), where

Sij
χ designates the derivative of the pertinent overlap integral,

S b bij i j
χ

µ
µ ν

ν= ∑ *
,

〈 µ ν| 〉χ , (80)

the barred indices labeling AOs and b iµ designating the LCAO coefficients
defining the i-th MO. (Note that these terms will be absent in property cal-
culations when the AO positions are fixed). This enables us to bring the ex-
pression for the components of the gradient of energy, Eq. (77), to the form
(cf. Eq. (34) of ref.1)

E D Q D Q D Q

I S

a b ab
a b

r s rs
r s

r a ra
r a

a b ab

χ χ χ χ= + +

+

∑ ∑ ∑,
,

,
,

,
,

,

2

χ χ χ

a b
r s rs

r s
a r ar

a r

I S I S
,

,
,

,
,

∑ ∑ ∑+ + 2 (81)

+ ∑Dij kl
i j k l

,
, , ,

〈 ij kl|| 〉χ ,

where

Ii,j = – 1
2 Ki,j (i,j = a,b or r,s), Ia,r = – 1

4 Ka,r , (82)

and (i,j = a,b; r,s; or a,r),

K D ik lm D ki lm D kl jm Di j jk lm kj lm kl im kl m, , , , ,[ || || ||= + + + i
klm

kl mj∑ || ]. (83)

Now, the “off-diagonal” matrix elements Dr,a are obtained by solving the
linear system of equations that arises by the application of the Z-vector
method (cf. refs42,1)
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( )D A Xr a a r
r a

ra sb s b,
,

, , ,ε ε− =∑ (84)

where

2X K D cb ds cs db D tb us tss b s b c d
c d

t u, , ,
,

,[ || || ] [ || |= + + + +∑ | ]
,

ub
t u
∑ (85)

and1

( )
A

rs ab rb as
ra sb

r a
,

|| ||
,= +

+
−

1
ε ε

(86)

while Qij
χ (ij = ab, rs) are given by (assuming real MO’s, cf. Eq. (25) of ref.1)

( )Q h S S ia jb b b Pij ij ij i j ab i j
a b

χ χ χ χ
µ ν σλ

µνλσ

ε ε= − + − +∑1
2 ||

,
∑ 〈µλ νσ|| 〉χ (87)

with h b bij i j
χ

µ νµν
= ∑ 〈µ ν| $ |h 〉χ , P b ba aaσλ σ λ

= ∑ , the first order density matrix
elements, and εi the i-th orbital energy. Note also that

( )f Q U ir ja ia jrij ij ra
r a

χ χ χ= + +∑ || || .
,

(88)

It thus remains to work out the explicit form of the matrix elements Dx,y
with x,y = a,b; r,s and ij, kl, which in our case are given by (cf. Eq. (78))

D g cx y x y x y
III qqp

, , ,{ } ,= − +
∈ ′∈ ′∈
∑∑∑ α

α
µ µ µ

µ

µµα

λ λΓ Γ1 (89)

with Γx y,
ζ given by Eq. (79) with x,y = a,b; r,s or ij, kl.

Clearly, at this stage, we have to specify the approximation scheme used
in the DGB approach in order to proceed. As an illustration, let us briefly
consider the 2D-SS case, taking into account singles and doubles. We thus
write the wave function for the state |Ψa〉 as follows

|Ψa 〉 = |Ψa
( )0 〉 + CR|ΨR

( )0 〉 + +∑ ∑
<
<

C Ca
r

a r
a
r

ab
rs

a b
r s

ab
r s

,

( ) ( )Φ Φ0 0 , (90)

Collect. Czech. Chem. Commun. (Vol. 66) (2001)

1186 Meissner, Paldus:



where |ΦR
( )0 〉 designates the residue state of Ip\{a}. The two states spanning

the model space are then

|Ψa
( )0 〉 ≡ |0〉 = g00|Φ0〉 + g01|Φ1〉 ,

|ΨR
( )0 〉 ≡ |R〉 = g10|Φ0〉 + g11|Φ1〉 .

(91)

Note that the coefficients Ca
r and Cab

rs are available to us once we carry out
the DGB calculation, regardless whether we employ the B0, BD2, or BQ2 ap-
proximation (recall that we are neglecting higher than doubles for the sake
of simplicity).

With the restrictions just pointed out, we thus have that

D g g C C Cx y x y x y R R a
r

a r
a
r

ab
r s

a, , ,
,

( )[= + − − −∑00
0

01
1 1Γ Γ λ λ λ b

r s

a b
r s

R x y
R

a
r

x y a
r

ab
r s

x y ab
r s

a b

]

( ) ( ), , ,

<
<

<

∑

+ + +λ λ λΓ Γ Γ
r s

a r
<

∑∑
,

.
(92)

Recall, that λR, λ a
r , and λ ab

r s are determined from Eq. (43). The various
Γ-terms in Eq. (92) are then given by Eq. (79). Specifically, in the case con-
sidered, we get

Γx y x y x y R x y
R

a
r

x y ag M g M C M C M Ca
r

, , , , ,
( )0

00
00

01
01 0 0= + + + + b

r s
x y

a b
r s

a r

M ab
r s

,
( )

,

,0

<
<

∑∑ (93)

and similarly for Γ Γ Γx y x y
R

x y a
r

, , ,, , ( ),1 and Γx y ab
r s

, ( ). The matrix elements M x y,
µν

then represent the matrix elements of the replacement operator e y
x relative

to the states µ and ν. Clearly, many of these matrix elements vanish or
equal to ±1. Thus, for example

M ij
00 = 〈Φ Φ0 0|~ |e j

i 〉 = δij , (94)

when i and j are occupied while zero otherwise,

M ij kl
ab
r s

,
( )0 = 〈Φ Φ0 0|~ | ( )e kl

ij
ab
r s 〉 = 〈Φ Φ0 0|~ |e ekl

ij
ab
r s 〉 = ∆ ∆kl

r s
ab
ij etc, . (95)
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Here ∆mn
pq designates the generalized antisymmetric Kronecker delta (cf. the

second ref.28), i.e.,

∆mn
pq

m
p

n
q

n
p

m
q= −δ δ δ δ . (96)

Obviously, these M-matrix elements represent simple numerical factors
that can be best generated automatically using similar codes as in the case
of the unitary-group-approach coupled-cluster (UGA-CC) method44, since
they can always be expressed as the Fermi (i.e., HF) vacuum mean value of a
string of unitary group generators. This is indeed the best way to proceed in
order to avoid error prone ad hoc derivation by hand.

The authors are indebted to Dr X. Li for fruitful discussions and help. One of us (H. M.) also wishes
to thank his co-author and the Department of Applied Mathematics of the University of Waterloo for
their hospitality. The continued support by the National Sciences and Engineering Research Council of
Canada (J. P.) that enabled this collaboration is also gratefully acknowledged.
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